Elementary maths for GMT

Algorithm analysis
Part Il

Algorithms, Big-Oh and Big-Omega

* An algorithm has a O(---) and Q(:--) running time
« By default, we mean the worst case running time

« Aworst case O(---) running time is a statement about all
possible inputs

* Aworst case Q(:--) running time is a statement about one
Input

Universiteit Utrecht

Elementary maths for GMT — Algorithm analysis

Algorithms, Big-Oh and Big-Omega

« Consider the following rubblesort algorithm

Algorithm BubbleSort(X)
Input array X of n integers
Output the sorted version in array X

fori<1ton-1do
J <« i
while (j>0)and X [j] < X [j-1] do
swap X [j] and X [j-1]
J«]-1
return X

NI

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Algorithms, Big-Oh and Big-Omega

« If X'Is already sorted, then Bubblesort runs in 0(n) time

« If X'Is sorted in reverse order, then Bubblesort runs in
0(n?) time

« If XIs In any other permutation, the running time is
somewhere in between

> The worst case running time is 0(n?)

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

\

A

Algorithms, Big-Oh and Big-Omega

« If X'Is already sorted, then Bubblesort runs in L(n) time
— we can claim (n) running time in the worst case

« If X Is sorted in reverse order, then Bubblesort runs in
Q(n?) time
— we can claim Q(n?) running time in the worst case (which is a
stronger claim)
« Since the running time is also 0(n?) in the worst case, we
cannot find an even worse input

N/

At*

’é

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Algorithms, Big-Oh and Big-Omega

* Since the worst case running time is (n?) and 0(n?), the
running time is also ©(n?) in the worst case

* The worst case running time bound is tight if the upper
bound and lower bound match

* Is it possible that an algorithm has a worst case running
time of Q(n?) and 0(n3) ? " o)

%‘E‘?Z’

AL\§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Algorithms, Big-Oh and Big-Omega

* Since the worst case running time is (n?) and 0(n?), the
running time is also ©(n?) in the worst case

* The worst case running time bound is tight if the upper
bound and lower bound match

* Is it possible that an algorithm has a worst case running

time of Q(n?logn) and 0(n?) ? Q(n? log n)
nZlog n
/ n2
O(n?)

AL\§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Basic algorithm problems

* The problem of sorting a set of numbers is perhaps the
most fundamental algorithmic problem

- InsertionSort and BubbleSort are simple incremental
algorithms that take ©(n?) time in the worst case

- MergeSort and Quicksort are based on a divide-and-
conquer approach and take ®(nlogn) time in the worst
case

- CountingSort takes ©(n) time but only works for integers
that are not too large

 Is it possible that any sorting algorithm is even faster than
O(n) time?

N Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Basic algorithm problems

The problem of storing a set of numbers for efficient
searching is the most fundamental data structuring
problem

A sorted array allows for binary search, which take
O(logn) time (binary search is a search algorithm for a
single number in a sorted set)

In an unsorted array, searching cannot be faster than ©(n)
time
Hash tables are specifically organized arrays that allow

searching in ©(1) time In practice, but not as a worst case
bound

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Recall: important functions

Constant 0(1) initialization of a variable
Logarithmic O(logn) searching in a sorted set
Linear 0(n) A full scan over the input
N-Log-N O(nlogn) sorting a set

Quadratic 0(n?) nested loops

Cubic 0(n3) one deeper nesting
Exponential o(2") all subsets of a set
Factorial 0(n!) all ordering of a set

%T@F Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Different steps in an algorithm

« Consider the problem: given a set of n numbers, are any
two equal?

— Example: 4, 6, 14, 3, 7, 97, 56, -4, 89, 34, 8, 14, -23, 88

e Solution 1 — The intuitive way: consider all pairs of numbers
and test each pair

— Result in a 0(n?) algorithm (nested loops)

e Solution 2 — The sort&search approach: sort the numbers
With MergeSort OF Quicksort (Step 1) and then scan (step 2)
to see If two adjacent numbers are equal

— Step 1 takes O(nlogn) time and step 2 takes 0(n) time
— Intotal O(nlogn) + O0(n) = O(nlogn + n) = O(nlogn) time

&

\

v% U 3 -4 3 U h . -
Tt§ niversiteit Ltrecht Elementary maths for GMT — Algorithm analysis 11

@

Different steps in an algorithm

* An algorithm has different steps if it has subtasks and each
subtask is completely finished before the next one begins

« We analyze each subtask separately and add up their
running times

« With Big-Oh notation and removal of constants and lower-
order terms, this implies that the most time expensive
subtask determines the efficiency of the whole algorithm

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Different steps in an algorithm

« Compare the two following algorithms

Algorithm Loops1(X)
Input array X of n integers
Output irrelevant

fori< 1tondo
some computations
forj«< 1tondo
some computations

return something

Algorithm Loops2(X)
Input array X of n integers
Output irrelevant

fori< 1tondo

some computations
forj<«< 1tondo

some computations

return something

« What is their running time?

’é

\

@

v% U 3 -4 3 U h . -
T§ niversiteit Ltrecht Elementary maths for GMT — Algorithm analysis

13

Wy
U~

More example problems

« Given a set of n numbers, can we split them in two subsets
with the same summed value?

— set: -18,4, 22,14, 2,7, 97, 56, -6, 88, 34,9, 17, -23, 69
— total sumis 372, half is 186
— One solution: -23,2,22,88,97 and -18,-6,4,7,9,14,17,34,56,69

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 14

Another nested-loops example

« Analyze the following algorithm

Algorithm SumOccurs(X, m)
Input array X of n integers and an integer m
Output true if X[i] + X[j] = m forsome i =]

MergeSort(X)

|l < 0

J < n-1

while (i <j) do
while (X[i] + X[j|>m)doj« -1
if (X[i] + X[j] = m) then return true
I« 1+1

return false

’é

\

@

v% U 3 -4 3 U h . -
T§ niversiteit Ltrecht Elementary maths for GMT — Algorithm analysis

\

@

Another nested-loops example

* Nested loops (both over the input size) do not always give
a worst case gquadratic running time

* When not, you need a different argument to bound the
number of times the inner loop Is executed

« This involves understanding what the algorithm precisely
does
— If you designed the algorithm, you (should) understand what it does

— Otherwise, applying the algorithm to some example input helps to
understand how the algorithm works

&

N | |
"§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 16

AN

N

Graphs and representations

« Agraph ¢ = (V,E) consists of a set V of vertices and a set
E of edges

« Abstractly speaking, vertices are elements and edges are
pairs of elements

 One can draw a graph by giving coordinates to the vertices,
but any graph exists without coordinates

 Example

-V ={1,2345,67) . 2 ; .
— E=1{(1,2),(1,3),(2,3),(2,5), o)
(3,5), (4,5),(3,6),(3,7),(5,6)}
6
5

Universiteit Utrecht

N

Elementary maths for GMT — Algorithm analysis 17

Graphs and representations

* The (input) size of a graph is expressed as the number of
vertices and the number of edges: |V| =nand |E| =m

e Question: what is the minimum and maximum number of
edges a graph with n vertices can have?

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

Graphs and representations

« Agraph ¢ = (V,E) is planar if it can be drawn in the plane

without any edge-edge intersections 5

1 3 JA
— Is this graph planar? 0

7 3}

« For planar graphs, itis known that m < 3n —5

— In other words, the number of edges of a planar graph with n
vertices is 0(n)

— BIg-Oh notation is not used only for running time statements

v J
2 | |
, 4Tb\§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 19

N

Graphs and representations

« Subdivisions of the plane can be represented with graphs,
If we give coordinates to each vertex

« Road networks are also graphs that have vertices with
coordinates

KeATingTon Cevars
Suevivision No. 4
STREET MAP

20

Graphs and representations

« A common representation of a graph is the adjacency
matrix, a n x n matrix of zeroes and ones with a one at (i,))
If and only if (i,)) iIs an edge in E

2
1 3 Vi 0O 1.1 0 0 0 O
© (1 01 0 1 0 o\
1 1 0 0 1 1 1
6 O 0 0 01 0O
2 5 O 1.1 1 0 1 0
\0 01010 o/
- V={1,23,45,6,7} 0 01 00 O0O
- E=1{(1,2),(1,3),(2,3),(2,5),
(3,5),(4,5),(3,6),(3,7),(5,6)}
My
g NS Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 21

NS

Graphs and representations

 Some questions

— Suppose that a graph G with n vertices and m edges is given. How
much storage space does the adjacency matrix representation of G
need? What if G is planar?

— Can we use Big-Oh notation to state this?

— Is the adjacency matrix representation suitable for representing
planar graphs?

%ﬁ@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 22

Graphs and representations

« A different common representation for graphs is the

adjacency list representation

It consists of an array A[1 ---n], with one entry for each
vertex, with access to a list of neighbors of that vertex

2 11234 |5]|6|7
L SEEN /L V|
2 [1] |1]|5]] |3]]3
\ 4 JV v
s 3] 3] 2] [2][s
4
— V=1{1,23,4,567) ol B L2
- E = {(1,2), (113)7 (213)7 (215}; 6 4
(3,5),(4,5),(3,6),(3,7),(5,6)} 7 6

NI

% N % Universiteit Utrecht

N Elementary maths for GMT — Algorithm analysis

23

Graphs and representations

* What are the storage requirements of an adjacency list
representation of a graph G with n vertices and m edges?

— 0(n+m)

* Do we really need the n and the m in the storage bound
(for example, would O(n) or O(m) be correct)?

— We really need both

« a graph with n vertices and n(nz_l) edges (all possible edges) needs
0(m) = 0(n?) storage, and this is not 0(n)
 a graph with n vertices but no edges needs 0(n) storage, and this is
not O(m) sincem =0
N

N
N

"
N

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

N

Graphs and representations

 What are the advantages and the disadvantages of the
adjacency matrix and adjacency list representations?

A

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

25

\

@

Graphs and representations

« Graphs often have weighted edges
— The weight may represent the distance between the incident
vertices, the travel time, the capacity, the cost ...
* |In an adjacency matrix, we can simply store the weight of
an edge (1,)) in the matrix (if no edge Is present, we need to
use a special value that does not occur as a weight)

* In an adjacency list, we store twice the weight of an edge
— with j in the list of i
— with 1in the list of |

&

N | |
"§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 26

AN

Graphs and representations

- 25 34 - - -
25 — 20 - 33 -
34 20 - — — 21
- - - = 32 -
- 33 - 32 - 22
- - 21 - 22 -
3141516
{11 (5] 12] |3
2.9 129 134 13.4 |13.9 |21
3113 |2 41 15
3.4 (2. 2.0 3.4 2.2
Voo '
516 6
3.9 |2.1] 2.2
AW
%}{ﬂi§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 27

Graphs and representations

« The most important algorithmic problem on (weighted)
graphs is computing shortest paths (sequences of edges
with minimum sum of weights)

« A famous algorithm is Dijkstra’s algorithm (1959), where a
shortest path between two given vertices in a given
weighted graph is computed in O(n + mlogm) time

« What graph representation is assumed when we state this
time bound?

=
i‘{ﬁ

N
N

=
‘\"/‘?{

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

i

Some graph problems

« Given a graph
— decide if a tour exists that visits every edge exactly once
— decide if a tour exists that visit every vertex exactly once
— find the largest completely interconnected sub-graph
— find the largest non-connected sub-graph
— determine the minimum number of colors to color the vertices so
that neighbors have different colors
« Given a planar graph, determine if the vertices can be
colored using two/three/four colors so that neighbors have
different colors

%@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis 29

A geometric problem

« Assume that a computer (model) can do additions,

subtractions, multiplications, divisions and memory reads
and writes in constant time each

« Given a simple polygon with n vertices, is it algorithmically
easier to compute its area or its perimeter?

%ﬁ@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis

30

